151 research outputs found

    Target-derived neurotrophic factors regulate the death of developing forebrain neurons after a change in their trophic requirements

    Get PDF
    Many neurons die as the normal brain develops. How this is regulated and whether the mechanism involves neurotrophic molecules from target cells are unknown. We found that cultured neurons from a key forebrain structure, the dorsal thalamus, develop a need for survival factors including brain-derived neurotrophic factor (BDNF) from their major target, the cerebral cortex, at the age at which they innervate it. Experiments in vivo have shown that rates of dorsal thalamic cell death are reduced by increasing cortical levels of BDNF and are increased in mutant mice lacking functional BDNF receptors or thalamocortical projections; these experiments have also shown that an increase in the rates of dorsal thalamic cell death can be achieved by blocking BDNF in the cortex. We suggest that the onset of a requirement for cortex-derived neurotrophic factors initiates a competitive mechanism regulating programmed cell death among dorsal thalamic neurons

    Sensitivity to numerosity is not a unique visuospatial psychophysical predictor of mathematical ability

    Get PDF
    Sensitivity to visual numerosity has previously been shown to predict human mathematical performance. However, it is not clear whether it is discrimination of numerosity per se that is predictive of mathematics, or whether the association is driven by more general task demands. To test this notion we had over 300 participants (ranging in age from 6 to 73years) perform a symbolic mathematics test and 4 different visuospatial matching tasks. The visual tasks involved matching 2 clusters of Gabor elements for their numerosity, density, size or orientation by a method of adjustment. Partial correlation and regression analyses showed that sensitivity to visual numerosity, sensitivity to visual orientation and mathematical education level predict a significant proportion of shared as well as unique variance in mathematics scores. These findings suggest that sensitivity to visual numerosity is not a unique visual psychophysical predictor of mathematical ability. Instead, the data are consistent with mathematics representing a multi-factorial process that shares resources with a number of visuospatial tasks

    Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization

    Get PDF
    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain unclear. Here, we use non-negative matrix factorization (NMF) – a dimensionality reduction technique – to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor dimensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures

    The Brightness of Colour

    Get PDF
    Background: The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour) appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK) effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies.Results: Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1), if not earlier in the visual system, since the brightness of colours (as opposed to their luminance) accords with activity in V1 as measured with fMRI.Conclusions: The data suggest that perceptions of brightness represent a robust visual response to the likely sources of stimuli, as determined, in this instance, by the known statistical relationship between scenes and their retinal responses. While the responses of the early visual system (receptors in this case) may represent specifically the statistics of images, post receptor responses are more likely represent the statistical relationship between images and scenes. A corollary of this suggestion is that the visual cortex is adapted to relate the retinal image to behaviour given the statistics of its past interactions with the sources of retinal images: the visual cortex is adapted to the signals it receives from the eyes, and not directly to the world beyond

    Impact of monopolar radiofrequency energy on subchondral bone viability

    Get PDF
    The purpose of this study was to analyze the impact of monopolar radiofrequency energy treatment on subchondral bone viability. The femoral grooves of six chinchilla bastard rabbits were exposed bilaterally to monopolar radiofrequency energy for 2, 4 and 8 s, creating a total of 36 defects. An intravital fluorescence bone-labeling technique characterized the process of subchondral bone mineralization within the 3 months following exposure to radiofrequency energy and was analyzed by widefield epifluorescence optical sectioning microscopy using an ApoTome. After 2 s of radiofrequency energy exposure, regular fluorescence staining of the subchondral bone was evident in all samples when compared to untreated areas. The depth of osteonecrosis after 4 and 8 s of radiofrequency energy treatment averaged 126 and 942 ”m at 22 days (P < .05; P < .01). The 4 s treatment group showed no osteonecrosis after 44 days whereas the depth of osteonecrosis extended from 519 ”m at 44 days (P < .01), to 281 ”m at 66 days (P < .01) and to 133 ”m at 88 days (P < .05) after 8 s of radiofrequency energy application. Though radiofrequency energy may induce transient osteonecrosis in the superficial zone of the subchondral bone, the results of this study suggest that post-arthroscopic osteonecrosis appears to be of only modest risk given the current clinical application in humans

    Novel lines of Pax6-/- embryonic stem cells exhibit reduced neurogenic capacity without loss of viability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Embryonic stem (ES) cells can differentiate into all cell types and have been used extensively to study factors affecting neuronal differentiation. ES cells containing mutations in known genes have the potential to provide useful in vitro models for the study of gene function during neuronal differentiation. Recently, mouse ES cell lines lacking the neurogenic transcription factor Pax6 were reported; neurons derived from these <it>Pax6</it><sup>-/- </sup>ES cells died rapidly after neuronal differentiation in vitro.</p> <p>Results</p> <p>Here we report the derivation of new lines of <it>Pax6</it><sup>-/- </sup>ES cells and the assessment of their ability to survive and differentiate both in vitro and in vivo. Neurons derived from our new <it>Pax6</it><sup>-/- </sup>lines were viable and continued to elaborate processes in culture under conditions that resulted in the death of neurons derived from previously reported <it>Pax6</it><sup>-/- </sup>ES cell lines. The new lines of <it>Pax6</it><sup>-/-</sup>ES cells showed reduced neurogenic potential, mimicking the effects of loss of Pax6 in vivo. We used our new lines to generate <it>Pax6</it><sup>-/- </sup>↔ <it>Pax6</it><sup>+/+ </sup>chimeras in which the mutant cells survived and displayed the same phenotypes as <it>Pax6</it><sup>-/- </sup>cells in <it>Pax6</it><sup>-/- </sup>↔ <it>Pax6</it><sup>+/+ </sup>chimeras made by embryo aggregation.</p> <p>Conclusions</p> <p>We suggest that loss of Pax6 from ES cells reduces their neurogenic capacity but does not necessarily result in the death of derived neurons. We offer these new lines as additional tools for those interested in the generation of chimeras and the analysis of in vitro ES cell models of Pax6 function during neuronal differentiation, embryonic and postnatal development.</p

    Aesthetic response to color combinations: preference, harmony, and similarity

    Get PDF
    Previous studies of preference for and harmony of color combinations have produced confusing results. For example, some claim that harmony increases with hue similarity, whereas others claim that it decreases. We argue that such confusions are resolved by distinguishing among three types of judgments about color pairs: (1) preference for the pair as a whole, (2) harmony of the pair as a whole, and (3) preference for its figural color when viewed against its colored background. Empirical support for this distinction shows that pair preference and harmony both increase as hue similarity increases, but preference relies more strongly on component color preference and lightness contrast. Although pairs with highly contrastive hues are generally judged to be neither preferable nor harmonious, figural color preference ratings increase as hue contrast with the background increases. The present results thus refine and clarify some of the best-known and most contentious claims of color theorists

    Automatic colorimetric calibration of human wounds

    Get PDF
    Contains fulltext : 88431.pdf (publisher's version ) (Open Access)BACKGROUND: Recently, digital photography in medicine is considered an acceptable tool in many clinical domains, e.g. wound care. Although ever higher resolutions are available, reproducibility is still poor and visual comparison of images remains difficult. This is even more the case for measurements performed on such images (colour, area, etc.). This problem is often neglected and images are freely compared and exchanged without further thought. METHODS: The first experiment checked whether camera settings or lighting conditions could negatively affect the quality of colorimetric calibration. Digital images plus a calibration chart were exposed to a variety of conditions. Precision and accuracy of colours after calibration were quantitatively assessed with a probability distribution for perceptual colour differences (dE_ab). The second experiment was designed to assess the impact of the automatic calibration procedure (i.e. chart detection) on real-world measurements. 40 Different images of real wounds were acquired and a region of interest was selected in each image. 3 Rotated versions of each image were automatically calibrated and colour differences were calculated. RESULTS: 1st Experiment: Colour differences between the measurements and real spectrophotometric measurements reveal median dE_ab values respectively 6.40 for the proper patches of calibrated normal images and 17.75 for uncalibrated images demonstrating an important improvement in accuracy after calibration. The reproducibility, visualized by the probability distribution of the dE_ab errors between 2 measurements of the patches of the images has a median of 3.43 dE* for all calibrated images, 23.26 dE_ab for all uncalibrated images. If we restrict ourselves to the proper patches of normal calibrated images the median is only 2.58 dE_ab! Wilcoxon sum-rank testing (p < 0.05) between uncalibrated normal images and calibrated normal images with proper squares were equal to 0 demonstrating a highly significant improvement of reproducibility. In the second experiment, the reproducibility of the chart detection during automatic calibration is presented using a probability distribution of dE_ab errors between 2 measurements of the same ROI. CONCLUSION: The investigators proposed an automatic colour calibration algorithm that ensures reproducible colour content of digital images. Evidence was provided that images taken with commercially available digital cameras can be calibrated independently of any camera settings and illumination features

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore